Objectives
After this lesson, students will be able to
A.5.4.1 Identify three stimuli that produce plant responses.
A.5.4.2 Describe how plants respond to seasonal changes.
A.5.4.3 State how long different angiosperms live.

Target Reading Skill
Explaining Cause and Effect Explain that the cause is the reason for what happens. The effect is what happens because of the cause. Relating cause and effect helps students relate the reason for what happens to what happens as a result.

Answers
Effects: Tropisms; Germination; Forming flowers, stems, leaves; Shedding leaves; Development and ripening of fruit

Preteach
Build Background Knowledge

Descriptions of Plant Growth
Ask students to describe the usual direction of root and stem growth for plants on Earth. (Roots grow downward; stems grow upward.) Tell students that researchers are studying how plants grow in low gravity conditions. This knowledge could help them develop food crops for future space expeditions. Challenge students to speculate how low gravity conditions might affect plant growth. (Possible answer: Plants might not grow in the same orientation as they do on Earth.)

Plant Responses and Growth

Reading Preview

Key Concepts
• What are the three stimuli that produce plant responses?
• How do plants respond to seasonal changes?
• How long do different angiosperms live?

Key Terms
• tropism • hormone • auxin • photoperiodism • short-day plant • long-day plant • critical night length • day-neutral plant • dormancy • annual • biennial • perennial

Target Reading Skill
Relation Cause and Effect
A cause makes something happen. An effect is what happens. As you read through the paragraphs under the heading Hormones and Tropisms, identify four effects of plant hormones. Write the information in a graphic organizer like the one below.

Skills Focus
Inferring

Materials
touch-sensitive plant such as a Venus’ flytrap or mimosa; common houseplant such as a geranium or impatias

Time
10 minutes

Tips
If you have difficulty obtaining sensitive plants, contact a biological supply house or specialty gardening shop.

Expected Outcome
The leaf of the sensitive plant closes when it is touched. The leaf of the houseplant does not respond.

Think It Over
Remind students to wash their hands after touching the plants.

The bladerwort is a freshwater plant with small yellow flowers. Attached to its floating stems are open structures called bladders. When a water flea touches a sensitive hair on a bladder, the bladder flicks open. Faster than you can blink, the water flea is sucked inside, and the bladder snaps shut. The plant then digests the trapped flea.

A bladerwort responds quickly—faster than many animals respond to a similar stimulus. You may be surprised to learn that some plants have lightning-quick responses. In fact, you might have thought that plants do not respond to stimuli at all. But plants do respond to some stimuli, although they usually do so more slowly than the bladerwort.

Tropisms

Animals usually respond to stimuli by moving. Unlike animals, plants commonly respond by growing either toward or away from a stimulus. A plant’s growth response toward or away from a stimulus is called a tropism (TROH piz um). If a plant grows toward the stimulus, it is said to show a positive tropism. If a plant grows away from a stimulus, it shows a negative tropism. Touch, light, and gravity are three important stimuli to which plants show growth responses, or tropisms.
Touch Some plants, such as bladderworts, show a response to touch called thigmotropism. The prefix thigma- comes from a Greek word that means “touch.” The stems of many vines, such as grapes and morning glories, show a positive thigmotropism. As the vines grow, they coil around any object that they touch.

Light Have you ever noticed plants on a windowsill with their leaves and stems facing the sun? All plants exhibit a response to light called phototropism. The leaves, stems, and flowers of plants grow toward light, showing a positive phototropism. By growing towards the light, a plant receives more energy for photosynthesis.

Gravity Plants also respond to gravity. This response is called gravitropism. Roots show positive gravitropism—they grow downward. Stems, on the other hand, show negative gravitropism—they grow upward.

Hormones and Tropisms Plants are able to respond to touch, light, and gravity because they produce hormones. A hormone produced by a plant is a chemical that affects how the plant grows and develops.

One important plant hormone is named *auxin* (aur-in). Auxin speeds up the rate at which a plant’s cells grow. Auxin controls a plant’s response to light. When light shines on one side of a plant’s stem, auxin builds up in the shaded side of the stem. The cells on the shaded side begin to grow faster. Eventually, the cells on the stem’s shaded side are longer than those on its sunny side. So the stem bends toward the light.

In addition to tropisms, plant hormones also control many other plant activities. Some of these activities are germination, the formation of flowers, stems, and leaves, the shedding of leaves, and the development and ripening of fruit.

Tropisms

FIGURE 19

Tropisms Touch, light, and gravity are three stimuli to which plants show growth responses, or tropisms.

- **Gravity** A plant's stem growing upward, against the pull of gravity, shows negative gravitropism.
- **Light** A plant’s stems and flowers growing toward light show positive phototropism.
- **Touch** A vine coiling around a wire shows positive thigmotropism.

Instruct

Tropisms

Teach Key Concepts

Stimulus Responses

Focus Prompt students to think about the response of the sensitive plant to touch in the Discover Activity.

Teach Ask: How did the sensitive plant respond to touch? (It closed.) What is a response to touch called? (Thigmotropism) Was the response positive or negative? Explain. (The response was negative, the plant pulled away from the stimulus.) Ask students to read the captions in Figure 19 and describe two other stimuli to which plants show tropism. Then ask: What kind of gravitropism do a plant’s roots show if they grow downward? Explain. (Positive gravitropism; they grow toward the pull of gravity.)

Apply Explain that not all touch responses are controlled by hormones. The mimosa plant in the Discover Activity, for example, closed because water was quickly pumped out, causing the leaves to fold. learning modality: verbal

Independent Practice

Teaching Resources

- Guided Reading and Study Worksheet: Plant Responses and Growth
- Student Edition on Audio CD

Monitor Progress

Writing Have students explain how plants exhibit positive phototropism and positive and negative gravitropism.

Answers It speeds up the rate at which plant cells grow.
Seasonal Changes

Teach Key Concepts

The Factor of Darkness in Blooming

Focus Ask: Why don’t some plants bloom in winter in locations that have seasonal changes? (Temperatures are too low and days are too short.)

Teach Ask: What environmental factor triggers plants to flower? (The amount of darkness a plant receives)

What is photoperiodism? (A plant’s response to hours of light and darkness) When does a short-day plant flower? (When nights are longer than its critical night length) A long-day plant? (When nights are shorter than its critical night length) If a long-day plant has a critical night length of 10 hours, when will it flower? (When nights are shorter than 10 hours) What are plants that bloom no matter what the periods of darkness called? (Day-neutral plants)

Apply Ask students to infer the advantage of different plants flowering at different times of the year. (Possible answers: The plant’s pollinators may pollinate only during certain times of the year. Plants have adapted to the climate—for example, a particular plant may not be able to flower during the summer.) learning modality: logical/mathematical

A49 Teaching Resources

For: Links on plant responses
Web Code: scn-0154

Help Students Read

Sequencing Refer to the Content Refresher for guidelines on sequencing. After students have read the passage Winter Dormancy, have them sketch the steps showing the changes a tree undergoes when winter approaches. Have them label each step and write in their own words what happens.

FIGURE 20
Short-day and Long-day Plants

A short-day plant flowers when nights are longer than the critical night length. A long-day plant flowers when nights are shorter than the critical night length.

Applying Concepts

Which plant—chrysanthemum or iris—would most likely flower in the early summer?

End of Seasonal Changes

Seasonal Changes

You may have heard the saying “April showers bring May flow- ers,” but have you ever wondered whether it’s true? Do all flowers bloom in May? Is it really rain that makes flowers bloom?

People have long observed that plants respond to the changing seasons. Some plants bloom in early spring, while others don’t bloom until summer. The leaves on some trees change color in autumn and then fall off by winter.

Photoperiodism What environmental factor triggers a plant to flower? The amount of darkness a plant receives determines the time of flowering in many plants. A plant’s response to seasonal changes in length of night and day is called photoperiodism.

Plants differ in how they respond to the length of nights. Short-day plants flower when nights are longer than a critical length. Long-day plants flower when nights are shorter than a critical length. This critical length, called the critical night length, is the number of hours of darkness that determines whether or not a plant will flower. For example, if a short-day plant has a critical night length of 11 hours, it will flower only when nights are longer than 11 hours.

Short-day plants bloom in the fall or winter, when nights are growing longer. Chrysanthemums and poinsettias are short-day plants. In contrast, long-day plants flower in the spring or summer, when nights are getting shorter. Long-day plants include irises and lettuce.

Other plants, such as dandelions, rice, and tomatoes, are day-neutral plants. Their flowering cycle is not sensitive to periods of light and dark.
Differentiated Instruction

Gifted and Talented

Investigating Flower Induction

Invite students to research how greenhouse managers bring flowers to bloom for specific seasons, such as poinsettias, and how they induce seasonal plants, such as chrysanthemums, to bloom all year.

learning modality: verbal

Less Proficient Readers

Outlining

Provide students with copies of an outline with the headings and subheadings of this section and blank lines under each heading. Have students fill in details under each heading as they read. Direct student pairs to generate questions from their outlines and quiz one another.

learning modality: verbal

Monitor Progress

Skills Check

Have students make a compare/contrast table of the types of photoperiodism in plants. Students can place their tables in their portfolios.

Answers

1. Days; total number of germinated seeds
2. The numbers did not change.
3. 20°C; the number of germinating seeds increases as the temperature increases.
4. The slope would be less steep because fewer seeds would germinate.

Winter Dormancy

As winter draws near, many plants prepare to go into a state of dormancy. **Dormancy** is a period when an organism’s growth or activity stops. Dormancy helps plants survive freezing temperatures and the lack of liquid water.

With many trees, the first change is that the leaves begin to turn color. Cooler weather and shorter days cause the leaves to stop making chlorophyll. As chlorophyll breaks down, yellow and orange pigments become visible. In addition, the plant begins to produce new red pigments. The brilliant colors of autumn leaves result.

Over the next few weeks, all of the remaining sugar and water are transported out of the tree’s leaves. The leaves then fall to the ground, and the tree is ready for winter.

What is dormancy?

Math Skill

Interpreting graphs

Focus

Explain that line graphs compare variables over time.

Teach

Tell students to find “20 days” on the horizontal axis, then follow that line upward until it meets the line for “10°C.” Read across to the vertical axis value—50 seeds.

Answers

1. Days; total number of germinated seeds
2. The numbers did not change.
3. 20°C; the number of germinating seeds increases as the temperature increases.
4. The slope would be less steep because fewer seeds would germinate.
Life Spans of Angiosperms

Teach Key Concepts

Annuals, Biennials, and Perennials

Focus Review the meanings of the terms annual, biennial, and perennial.

Teach Ask: What are the life spans of angiosperms? (Annuals—one growing season; biennials—two years; perennials—many years)

Apply Ask: Why are trees sold as seedlings rather than seeds? (Trees are perennials and too slow-growing to start as seeds.) Learning modality: verbal

Monitor Progress

Answer Two years

Assess

Reviewing Key Concepts

1. a. Thigmotropism—a plant’s response to touch; phototropism—a plant’s response to light; gravitropism—a plant’s response to gravity. b. It makes the cells on the shaded side grow longer than other cells. c. Possible answer: The plants display positive thigmotropism to cling to something for support.

2. a. A plant’s response to seasonal changes in length of night and day; a period when an organism’s growth or activity stops. b. Short-day plants bloom when nights are longer than a critical length. Long-day plants bloom when nights are shorter than a critical length. c. Leaves stop making chlorophyll. Chlorophyll breaks down. Pigments masked by chlorophyll become visible. New red pigments are produced. Remaining sugar and water leave the leaves. Leaves fall to the ground.

3. a. Annuals complete a life cycle within one growing year, biennials within two years, and perennials more than two years. b. Perennial: it lives for many years.

Reteach Sketch examples of tropisms, photoperiodism, and dormancy, and have students describe them.

Life Spans of Angiosperms

Angiosperms are classified as annuals, biennials, or perennials based on the length of their life cycles. Flowering plants that complete a life cycle within one growing season are called annuals. Most annuals have herbaceous stems. Annuals include marigolds, petunias, wheat, and cucumbers.

Angiosperms that complete their life cycle in two years are called biennials. In the first year, biennials germinate and grow roots, very short stems, and leaves. During their second year, biennials lengthen their stems, grow new leaves, and then produce flowers and seeds. Once the flowers produce seeds, the plant dies. Parsley, celery, and fougline are biennials.

Flowering plants that live for more than two years are called perennials. Most perennials flower every year. Some perennials, such as perennials, have herbaceous stems. The leaves and stems of these plants die each winter, and new ones are produced each spring. Most perennials, however, have woody stems that live through the winter. Maple trees are examples of woody perennials.

Section 4 Assessment

Target Reading Skill Relating Cause and Effect: Refer to your graphic organizer about plant hormones to help you answer Question 1 below.

Reviewing Key Concepts

1. a. Describing: Describe three tropisms that take place in plants. b. Explaining: How does auxin control a plant’s response to light? c. Developing Hypotheses: The stems of your morning glory plants have wrapped around your garden fence. Explain why this has occurred.

At Home Activity

Sun Seekers With a family member, soak some corn seeds or lima bean seeds in water overnight. Then push them gently into some soil in a paper cup until they are just covered. Keep the soil moist. When you see the stems break through the soil, place the cup in a sunny window. After a few days, explain to your family member why the plants grew in the direction they did.

Teaching Resources

- Section Summary: Plant Responses and Growth
- Review and Reinforce: Plant Responses and Growth
- Enrich: Plant Responses and Growth

At Home Activity

Sun Seekers. Review the explanation with students: the plants respond with positive phototropism because they grow toward light. Ask students to identify what part of the seedling demonstrated positive gravitropism. (Roots)